Содержание
Азотные удобрения
Начиная с 1830 и вплоть до 1914 года основным азотным удобрением была чилийская селитра, залежи которой сосредоточены в Южной Америки. В качестве азотного удобрения был также аммиак отходящих газов коксовых печей металлургической промышленности.
К началу XX в. природные залежи чилийской селитры были почти исчерпаны, поэтому назревал вопрос о производстве азотных удобрениях в промышленных масштабах. Перспективным являлось использование для производства азотных удобрений атмосферного азота, который в 15 километровом слое воздуха над площадью в 1 га составляет около 78 тыс. т молекулярного азота.
В конце XIX в. в лабораторных условиях был найден способ связывания молекулярного азота кислородом путем пропускания воздуха через разряд вольтовой дуги с температура около 3000 °С:
Образующийся монооксид азота окисляется кислородом воздуха до диоксида азота, который при взаимодействии с водой образует азотную кислоту.
Первый завод по этой технологии был построен в Норвегии, в которой природные условия позволяют получать относительно дешевую электроэнергию. Его производство сосредотачивалось на выпуске Са(NO3)2. Отсюда кальциевая селитра получила название «норвежской селитры». Очевидным недостатком этой технологии были большие затраты энергии, а получаемая кальциевая селитра обладает очень высокой гигроскопичностью и неудобна в использовании. Поэтому способ не получил дальнейшего распространения.
Был предложен способ связывания атмосферного азота, основанный на связывании азота карбидом кальция при температура 700—800 °С:
Метод производства цианамида кальция технологически проще и дешевле, но также не получил широкого распространения из-за открытия способа получения аммиака из молекулярного азота и водорода.
Способ синтеза аммиака был открыт немецким химиком Габером. Из всех способов связывания молекулярного азота его способ оказался самым дешевым, и в настоящее время является основным в производстве азотных удобрений.
Получение аммиака
Аммиак получают взаимодействием азота и водорода. Для этого смесь газов в соотношении 1:3 подвергают сжатию под высоким давлением и подают в контактную печь (камеру синтеза), где при температуре 400—500 °С, давлении и в присутствии катализаторов (железа с добавками оксидов алюминия и калия) происходит синтез аммиака:
Источником азота является воздух. Для выделения азота из воздуха применяют один из способов:
- Атмосферный воздух пропускают через генератор, заполненный горящим коксом, кислород при этом полностью выгорает, а из генератора поступает смесь азота и диоксида углерода. Последний при давлении 25 атм поглощается водой.
- Воздух сжижается с последующим его разделением на азот и кислород за счет разницы в температурах кипения: кислород кипит при температуре -183 °С, азот — при -196 °С.
До 50% затрат при производстве аммиака приходится на получение водорода. В качестве источников водорода используют природные и попутные нефтяные газы или отходящие газы коксовых печей. Водород может получаться при электролизе воды. Последний способ позволяет получать чистый водород, но требует больших энергозатрат.
Полученный аммиак используется непосредственно в качестве удобрения, для производства аммонийных удобрений, азотной кислоты, мочевины.
Получение азотной кислоты
Азотную кислоту получают каталитическим окислением аммиака кислородом воздуха. Это способ является основным для производства азотной кислоты. Реакция протекает в несколько стадий. Вначале аммиак окисляется до оксида азота:
Оксид азота поступает в окислительные башни, где окисляется кислородом до диоксида азота:
NO2 поступает в поглотительные башни (абсорберы), где поглощается водой с образованием азотной и азотистой кислот:
Азотистая кислота HNO2 неустойчива и быстро разлагается:
Образующиеся оксиды азота NO и NO2 возвращаются в те же окислительную и поглотительную установки.
Получаемые промышленными методами аммиак и азотная кислота являются основными источниками получения азотных удобрений.
Классификация азотных удобрений
В зависимости от формы азота азотные удобрения классифицируются на:
- нитратные, или селитры, — натриевая (NaNO3) и кальциевая [Са(NO3)2] селитры;
- аммонийные — сульфат [(NH4)2SO4] и хлорид аммония (NН4Сl), карбонат [(NН4)2СO3] и бикарбонат аммония (NН4НСO3);
- аммонийно-нитратные — аммонийная селитра (NН4NO3), сульфонитрат аммония [(NН4)2SO4 ⋅ 2NН4NO3];
- аммиачные — безводный аммиак, аммиачная вода;
- амидные — мочевина [СО(NН2)2] и цианамид кальция (СаСN2).
Азотные удобрения могут иметь смешанные формы, например, аммиакаты. В отдельную группу выделяют медленнодействующие формы, такие как мочевино-формальдегидные и капсулированные удобрения.
Классификация азотных удобрений
Нитратные удобрения
Нитратные удобрения — азотные удобрения, в которых азот содержится в виде нитратной группы NO3 — . Например, натриевая селитра, или нитрат натрия, NaNO3 и кальциевая селитра, или нитрат кальция, Са(NO3)2. В России применение нитратных форм составляет менее 1%.
Натриевая селитра
Натриевая селитра, или нитрат натрия, или азотнокислый натрий, или чилийская селитра, — NaNO3. Содержит 16% азота и 26% натрия. Была первым минеральным азотным удобрением. Самое большое природное месторождение находилось в Чили. Значительные залежи обнаружены в Калифорнии, на юго-западе Африки.
В настоящее время нитрат натрия получают как побочный продукт при производстве азотной кислоты из аммиака. Не поглощенные водой в поглотительных башнях оксиды азота NO и NO2 («хвостовые газы») пропускают через дополнительные поглотительные башни, орошаемые раствором карбоната или гидроксида натрия, при это образуется смесь нитрата и нитрита натрия:
Нитрит при подкислении разбавленной азотной кислотой переходит в нитрат:
Монооксид азота вновь возвращается в окислительную башню. Подкисленный раствор нитрата натрия нейтрализуют, выпаривают и отделяют осадок NaNO3 от маточного раствора.
Нитрат натрия — мелкокристаллическая соль белого, серого или буровато-желтого цвета, хорошо растворима в воде, гигроскопична, при повышенной влажности способна перекристаллизовываться в более крупные кристаллы. В сухом состоянии и правильном хранении не слеживается, сохраняет сыпучесть.
Кальциевая селитра
Кальциевая селитра, или нитрат кальция, или азотнокислый кальций, или норвежская селитра, — Са(NO3)2. Содержит 17% азота. В первые в промышленности была синтезирована в 1905 г. в Норвегии.
В настоящее время производят как побочный продукт при получении азотной кислоты из аммиака: при нейтрализации «хвостовых газов» (оксидов азота NO и NO2) водным раствором гидроксида кальция Ca(OH)2 (известковым молоком), а также при производстве комплексных удобрений методом азотнокислого разложения фосфатного сырья.
Кальциевая селитра сильногигроскопична (9,5 баллов из 10). При обычных условиях хранения сильно отсыревает, расплывается и слеживается. Ее транспортируют и хранят во влагонепроницаемых мешках. Для снижения гигроскопичных свойств в товарную кальциевую селитру вводят гидрофобные добавки (гипс, парафинистый мазут) до 0,5% от массы соли.
Для улучшения физических свойств к раствору нитрата кальция в процессе производства добавляют 4-7% аммиачной селитры. Кальциевую селитру выпускают в гранулированном виде, которую получают добавлением 4-7% нитрата аммония к упаренному концентрированному раствору селитры и последующим гранулированием.
Применение нитратных удобрений
Нитратные удобрения возможно применять на разных почвах под все сельскохозяйственные культуры. Из-за низкого содержания азота их применение экономически более дорогое, их чаще используют в районах, расположенных вблизи производств.
Кальциевая и натриевая селитры для большинства растений равноценны. Исключение составляет сахарная свекла и другие корнеплоды: натриевая селитра более эффективна вследствие положительного действия натрия на эти культуры. Последнее объясняется положительным действием натрия на отток углеводов из листьев в корни, и, следовательно, повышение урожая корней и содержание сахаров в них.
При внесении в почву нитратные удобрения быстро растворяются в почвенном растворе, катионы Na + и Са 2+ вступают в обменные реакции с почвенным поглощающим комплексом, переходят в обменно-поглощенное состояние:
Систематическое внесение кальциевой селитры способствует пополнению ППК кальцием.
Нитрат-ион NO3 — образует с вытесненными из почвенного поглощающего комплекса катионами растворимые соли или азотную кислоту. При этом он не подвергается физико-химическому или химическому поглощению. Нитрат может связываться в почве только за счет биологического поглощения в теплый период года. В осенне-зимний период биологическое поглощение почти полностью отсутствует. По этой причине нитратные удобрения осенью вносить нецелесообразно, особенно в районах с промывным водным режимом.
Натриевую и кальциевую селитры применяют весной под предпосевную культивацию и в виде подкормок во время вегетации. В летний период нитраты из-за высокой подвижности в условиях избыточного увлажнения, орошения и на легкодренируемых почвах могут вымываться. Поэтому в регионах с влажным климатом, в орошаемых районах под рис и другие культуры вносят аммиачные формы.
Натриевую селитру вносять также в рядки с семенами, кальциевая селитра малопригодна из-за высокой гигроскопичности. Натриевую селитру нельзя применять на засоленных почвах и солонцах.
Натриевая и кальциевая селитры являются физиологически щелочные удобрения, так как растения поглощают анион NО3 — больше, чем катионы Na + или Са 2+ . Часть катионов, оставаясь в почве, подщелачивает почвенный раствор. Длительное применение нитратных удобрений на кислых дерново-подзолистых и легких малобуферных почвах способствует их нейтрализации. Поэтому на дерново-подзолистых почвах селитры показывают большую эффективность, чем физиологически кислые аммиачные удобрения. На черноземах это преимущество теряется.
Аммонийные удобрения
Аммонийные удобрения — форма азотных удобрений, в которых азот содержится в виде аммонийной группы NH4 + . К ним относятся сульфат аммония, хлорид аммония, карбонат аммония. Их производство относительно проще, чем нитратных удобрений, так как отсутствует стадия окисления аммиака до азотной кислоты.
Сульфат аммония
Сульфат аммония, или сернокислый аммоний, (NН4)2SO4 чистая соль содержит 21,2% азота, в техническом продукте — 20,5%. В мировом производстве азотных удобрений на его долю приходится примерно 25%, в России — менее 6%. Большая долю сульфата аммония в мировом производстве объясняется широким использованием в орошаемом земледелии под рис и хлопчатник и в районах избыточного увлажнения (тропиках).
В России производить сульфат аммония начали в Донбассе на Щербинском руднике в 1899 г. путем улавливания и нейтрализации аммиака, образующегося при коксовании каменного угля, серной кислотой. Ту же технологическую схему используют и в настоящее время.
Сульфат аммония можно получать поглощением серной кислотой аммиака по реакции:
Реакция протекает с выделением тепла, которое расходуется на упаривание раствора, при охлаждении насыщенного раствора сульфат аммония выпадает в виде кристаллического осадка, который отделяется и высушивается. Серная кислота может быть заменена более дешевыми природными минералами: гипсом (CaSO4⋅2H2O), мирабилитом (глауберовой солью, Na2SO4⋅10H2O) или отходами производства фосфорных удобрений — фосфогипсом.
Тонкомолотый гипс взбалтывают в аммиачной воде, через которую пропускают углекислый газ. В результате взаимодействия аммиака, углекислого газа и гипса образуется сернокислый аммоний:
Карбонат кальция нерастворимый в воде отфильтровывают, а раствор, содержащий (NH4)2SO4 упаривают до кристаллизации, отделяют от маточного раствора и высушивают.
Благодаря более дешевой стоимости аммиака, получаемого из отходящих коксовых газов, коксохимический сульфат аммония получается более дешевым.
Сульфат аммония хорошо растворим в воде: 76,3 г (NН4)2SO4 на 100 см 3 воды при 20 °С. В сухом состоянии удобрение обладает небольшой гигроскопичностью, мало слеживается при хранении, не расплывается на воздухе, сохраняет сыпучесть и хорошо рассеивается туковыми агрегатами.
Сульфат аммония представляет собой белое кристаллическое вещество с различными окрасками в зависимости от способа производства. Содержит 0,2-0,3% влаги, примеси Ca, Mg, SiO2, 0,025-0,05% (0,2-0,5% [2] ) свободной серной кислоты, придающая удобрению слабокислую реакцию. Коксохимический сульфат аммония содержит небольшое количество органических примесей — смолистых веществ, фенола, до 0,1% роданистого аммония (NН4SCN). Этими примесями может быть обусловлена серая, синеватя или красноватая окраски.
Из-за токсичности для растений роданистого аммония, его содержание не должно превышать более 0,1%, особенно на почвах с низким содержанием гумуса и кальция. В сульфат аммония входит 24% серы, поэтому он является источником серного питания растений.
После внесения в почву большая часть ионов аммония NH4 + включается в поглощающего комплекса:
Способность почвы поглощать аммоний предохраняет его от вымывания; однако при подкормке он может не использоваться.
В результате нитрификации, часть аммиачного азота переходит в нитратную форму, что приводит к подкислению почвенного раствора. Подкисление вызывается также физиологической кислотностью удобрения. Систематическое внесение обычных доз сульфата аммония приводит к изменению реакции почвенной среды. На кислых почвах отрицательное действие проявляется через несколько лет. На чернозёмных почвах его можно применять более длительное время. Согласно данным Мироновской опытной станции на Украине применение (NH4)2SO4 в течение 14 лет приводило к изменению реакцию почвы: pH от 6,0 до 4,9; обменная кислотность возросла в 1,5, гидролитическая — в 2,5 раза. На урожайности это не повлияло благодаря высокому содержанию гумуса, большой буферности и ёмкости поглощения чернозема. На каштановых почвах и сероземах подкисление карбонатных почв при внесении физиологически кислых удобрений не представляет опасности.
На дерново-подзолистых почвах при сочетании с известкованием сульфат аммония не уступает другим азотным удобрениям. Однако длительное применение в высоких дозах без известкования на этих почвах ухудшает их свойства, рост и продуктивность растений. Такие культуры, как овес, озимая рожь, лен, картофель, брюква слабее реагируют на подкисляющее действие сульфата аммония, чем свекла, кукуруза, конопля, ячмень и яровая пшеница.
Из-за слабой миграции ионов аммония это удобрение эффективно на легких почвах и в районах достаточного увлажнения. При внесении в рядки и в качестве подкормки сульфат аммония менее эффективен, чем другие азотные удобрения.
Сульфат аммония-натрия
Сульфат аммония-натрия — (NH4)2SO4⋅Na2SO4, содержит до 16% азота, 9% Na2O, до 2,5 % органических примесей, является отходом производства капролактана. Представляет собой кристаллическую соль желтоватого цвета. Хорошее удобрение для сахарной свеклы и растений семейства крестоцветных, отзывчивых на натрий и серу. Может применяться для подкормки сенокосов и пастбищ.
Хлорид аммония
Хлорид аммония, или хлористый аммоний, NH4Cl, является побочным продукт при производстве пищевой соды (гидрокарбоната натрия):
Хлорид аммония представляет мелкокристаллический белый или желтоватый порошок, содержит до 26% азота, в 100 см 3 воды при 20 °С растворяется 37,2 г, малогигроскопичен, не слеживается, хорошо рассеивается. Отличается высокой физиологической кислотностью и содержит до 60% хлора, который отрицательно действует на хлорофобные культуры, такие как картофель, табак, виноград, лук, капуста, конопля, лен, гречиха, цитрусовые, овощные, плодово-ягодные. Поэтому его вносят осенью, чтобы хлор вымылся из корнеобитаемого слоя атмосферными осадками.
В почвах хлорид аммония вступает в обменные реакции с поглощающим комплексом:
В почве частично подвергается нитрификации. Повысить эффективность хлористого аммония можно также, как и сульфата аммония: известкованием, предварительной нейтрализацией удобрения (на 1 ц NH4Cl 1,4 ц СаСO3), совместным внесением с физиологически щелочными удобрениями, сочетанием с органическими удобрениями.
По удобрительному действию NH4Cl обычно уступает (NH4)2SO4. Для зерновых культур при обычных дозах эффективность хлорида и сульфата равноценны. Под чувствительные к хлору культуры повышенные дозы не применяют, вносят заблаговременно как основное удобрение.
Карбонат и гидрокарбонат аммония
Карбонат (NH4)2CO3 и гидрокарбонат (бикарбонат) аммония NН4НСO3 применяют в качестве удобрения в небольших количествах.
Карбонат аммония, или углекислый аммоний — кристаллическое вещество белого цвета, получают пропусканием углекислого газа через водный раствор аммиака с последующим выпариванием образующейся соли. Карбонат нестоек, на открытом воздухе может разлагаться с выделением аммиака и образованием гидрокарбоната аммония. Технический продукт содержит 21-24% азота, представляет собой смесь карбоната, гидрокарбоната и карбамата аммония.
Гидрокарбонат, или бикарбонат, аммония получают адсорбцией газообразного аммиака и углекислого газа раствором карбоната аммония. Содержит около 17% азота. Обладает относительно большей стойкостью, чем карбонат, но также имеет потери аммиака при хранении, транспортировке и внесении. При поверхностном внесении его следует сразу заделывать в почву.
Применение аммонийных удобрений
При внесении в почву аммонийные удобрения растворяются и ион NН4 + вступает в обменные реакции с твердой фазой почвы. Большая часть катионов NН4 + включается в почвенный поглощающий комплекс, вытесняя из него эквивалентное количество катионов:
Переходя в обменно-поглощенное состояние, аммоний закрепляется в почве, вследствие чего предотвращается его вымывания. В то же время, в обменно-поглощенном состоянии аммоний остается доступен растениям.
Частично под действием процесса нитрификации аммонийный азот переходит в нитратную форму. Скорость этого процесса зависит от температуры, влажности, аэрации, биологической активности и реакция почвы, степень окультуренности. Так, в микрополевом опыте, проведенном на слабоокультуренной дерново-подзолистой почве, через 15 дней опыта нитрификации подверглось 12% сульфата аммония, через 30 дней — 24%, в то время на хорошо окультуренной почве нитрификация составила соответственно 79 и 96% внесенного количества.
Переувлажнение и повышенная кислотность тормозят процессы нитрификации. Известкование кислых почв ускоряет этот процесс.
Хлорид аммония нитрифицируется медленнее, чем сульфат, что связано с угнетающим действием хлора на деятельность нитрифицирующих бактерий.
После превращения аммонийного азота в нитратный он приобретает свойства нитратных удобрений. В процессе нитрификации в почве образуется азотная, соляная или серная кислота:
В почве кислоты нейтрализуются гидрокарбонатами почвенного раствора и катионами почвенного поглощающего комплекса:
Нейтрализация минеральных кислот сопровождается расходом гидрокарбонатов почвенного раствора и вытеснением оснований из почвенного поглощающего комплекса водородом, что снижает буферную способность и повышает кислотность почвы.
Изменение реакции при внесении аммонийных удобрений связано также с их физиологической кислотностью. Из (NН4)2SO4 и NН4Сl растения поглощают катион быстрее, чем анион, соответственно, накапливаются кислотные остатки. Систематическое их применение сопровождается подкислением почвенной среды. Степень подкисления тем больше, чем меньше буферная способность.
На дерново-подзолистых и серых лесных почвах с небольшой суммой поглощенных оснований и содержанием органического вещества подкисление проявляется быстрее по сравнению с черноземами и каштановыми почвами. Так, многолетнее внесение сульфата аммония (в составе NРК) на серой лесной почве привело к увеличению гидролитической кислотности, уменьшению суммы поглощенных оснований и степени насыщенности основаниями.
Для предотвращения негативного подкисляющего действия аммонийных удобрений на таких почвах предварительно проводят известкование или нейтрализация сульфата и хлорида аммония перед внесением из расчета 130-140 кг извести на 100 кг удобрений. Нейтрализацию удобрений проводят непосредственно перед внесением.
Особенности превращения аммонийных удобрений в почвах предопределяют технологию их эффективного применения. Эти удобрения вносят, как правило, до посева в качестве основных, причем как весной, так и осенью, не опасаясь вымывания азота.
Эффективность аммонийных удобрений зависит от кислотности и буферности почв, биологических особенностей культур.
На почвах Нечерноземной зоны аммонийные удобрения могут повышать эффективность фосфоритной муки. Физиологическая кислотность этих удобрений способствует растворению фосфатов кальция.
Таблица. Влияние удобрений на кислотность и сумму поглощенных оснований серой лесной почвы (по данным НИИ лубяных культур)
Удобрение | Обменная кислотность | Гидролитическая кислотность | Сумма поглощенных оснований | Степень насыщенности основаниями, % |
---|---|---|---|---|
мг⋅экв/100 г почвы | цветение | |||
Контроль (без удобрений) | 0,4 | 11,3 | 14,3 | 55,8 |
Навоз, 40 т/га | 0,4 | 9,8 | 17,7 | 64,4 |
NPK в дозах, эквивалентных содержанию 40 т навоза (азот в форме (NH4)2SO4) | 0,5 | 14,2 | 9,3 | 39,4 |
Эффективность аммонийных удобрений зависит от особенностей выращиваемых культур. Менее чувствительные к кислой реакции культуры, например, рожь, овес, картофель, лен, гречиха, меньше реагируют на подкисление. Чувствительные культуры (корнеплоды, большинство овощных и бобовых, ячмень, пшеница, подсолнечник), при многократном применении аммонийных удобрений отрицательно реагируют на подкисление.
Культуры, чувствительные к повышенному содержанию хлора реагируют отрицательно. Так, содержание крахмала в картофеле при избытке хлора снижается. Поэтому под хлорофобные культуры применяют сульфат аммония или вносят хлорид аммония осенью.
Аммонийный азот из-за низкой подвижности локализуется в почве местах его внесения. Поэтому аммонийные удобрения малопригодны для междурядных подкормок и при локальном внесении. В начальные фазы роста корневая система культур развита слабо и может не достигать зоны локализации удобрений.
Аммонийные удобрения не применяют и для припосевного внесения в рядки или под предпосевную культивацию из-за того, что интенсивное поступление аммонийного азота в молодые растения может приводить к «аммиачному отравлению» вследствие его избыточного накопления.
Аммонийно-нитратные удобрения
Аммонийно-нитратные удобрения — группа азотных удобрений, включающая в состав одновременно аммонийный и нитратный формы азота. К этой группе относятся аммонийная селитра, сульфонитрат аммония, известково-аммонийная селитра.
Аммонийная селитра
Аммонийная селитра, или аммиачная селитра, нитрат аммония, азотнокислый аммоний, NН4NO3, содержит 35% нитратного и аммонийного азота в соотношении 1:1. Получают нейтрализацией азотной кислоты аммиаком:
Полученный раствор нитрата аммония упаривают, подвергают перекристаллизации и высушиванию. Для упаривания используют выделяющуюся теплоту реакции нейтрализации. В результате получается белое кристаллическое вещество, содержащее до 98-99% NН4NO3. Для улучшения физико-химических свойств вводят добавки.
Аммонийная селитра хорошо растворима в воде: при 20 °С в 100 см 3 воды растворяется 192 г соли, очень гигроскопична, на воздухе отсыревает и слеживается. В зависимости от температуры имеет пять кристаллических модификаций. Переходы из одной модификации происходят, при температурах +32,1 и —16°С. Если при хранении нитрат аммония происходили резкие перепады температур, захватывающие эти температурные точки, то будет происходить перекристаллизация одной формы в другую с увеличением объема. Удобрение при этом сильно уплотняется, превращаясь в комья, глыбы, а мешки, в которых оно хранилось, могут лопнуть.
Для предохранения аммонийной селитры от слеживания в нее добавляют гидрофобные и повышающие прочность гранул добавки: молотый известняк, мел, фосфоритную муку, фосфогипс, каолинит, нитрат магния, жирные кислоты и их амины и другие. Общее содержание добавок составляет от 3,0 до 5,0%. Добавки могут придавать желтый оттенок. В качестве добавки могут вводить фиксин, который придает красный цвет.
Физические свойства аммонийной селитры зависят от размеров и формы получаемых кристаллов и гранул. Химическая промышленность производит аммонийную селитру в виде гранул размером 1-4 мм и чешуек (чешуйчатая селитра). Гранулированная аммонийная селитра характеризуется хорошими физическими свойствами.
Содержание влаги должно быть не более 0,3-0,4%, реакция нейтральная или слабокислая, содержание нерастворимых примесей — не более 0,1%.
Для предотвращения увлажнения и снижения слеживаемости нитрат аммония упаковывают в плотную, герметичную тару — полиэтиленовые или ламинированные бумажные мешки. При хранении мешки нельзя складывать в высокие бурты или штабеля, так как в нижних слоях бурта мешки сильно уплотняются и слеживаются.
Для улучшения физических свойств селитру можно смешивать при хранении с преципитатом и фосфоритной мукой (для подзолистых почв). Непосредственно перед внесением в подзолистую почву аммонийную селитру можно смешивать с 30-40% карбоната кальция, что сильно снижает гигроскопичность и повышает удобство машинного высева.
Нитрат аммония огнеопасен, при определенных условиях может взрываться. При температуре выше 200-270 °С разлагается с выделением тепла и сильных окислителей, способствующих ускорению горения. Резкое нагревание до 400-500 °С приводит к взрыву. Смеси с горючими материалами (опилками, дизельным топливом, бумажной пылью, сухим торфом, маслом) способствуют проявлению огне- и взрывоопасных свойств.
Впервые в чистом виде нитрат аммония начали применять в нашей стране. Благодаря высокому содержанию азота, стоимость перевозки и внесения существенно ниже, чем других азотных удобрений за исключением карбамида и жидкого аммиака. Благодаря сочетанию подвижного нитратного азота с менее подвижным аммонийным, возможно варьировать способами, дозами и сроками его применения в зависимости от почвенно-климатических условий и биологических особенностей культур.
При внесении в почву нитрат аммония растворяется почвенной влагой. Азот NH4NO3 поглощается микроорганизмами, а при их отмирании и минерализации становится доступным растениям. В почве аммоний вступает в обменную реакцию с почвенным поглощающим комплексом:
При недостатке кальция на кислых подзолистых почвах внесение аммонийной селитры приводит к подкислению почвенного раствора. Опытами Д.Н. Прянишникова установлено, что из раствора нитрата аммония быстрее поглощается катион NН4 + , чем NО3 — . Поэтому нитрат аммония относится к физиологически кислым удобрениям. Однако его физиологическая кислотность ниже, чем у аммонийных удобрений.
На почвах, насыщенных основаниями (чернозём, серозём), систематическое внесение высоких доз аммиачной селитры не приводит к подкислению почвенного раствора. Местное подкисление носит временный характер, но может оказывать негативное действие на начальных фазах роста растений и увеличить подвижность токсичных соединений алюминия, марганца и железа.
На кислых дерново-подзолистых почвах внесение нитрата аммония может приводит к еще большему подкислению, который носит временный характер: поглощение нитратного азота восстанавливает реакцию среды до исходного значения.
Аммоний может подвергаться нитрификации, что также временно подкисляет почву. Часть нитратного азота в процессе денитрификации теряется в виде газообразных соединений (N2, N2O, NO). В первый год после внесения используется 40-50% азота; 10-20% нитратного и 20-40% аммиачного азота трансформируются в органическую форму (иммобилизуются), только 10-15%, то есть 2-3% от внесенного, которой усваивается растениями на второй год. Процесс иммобилизации ускоряется при запашке растительных остатков с низким содержанием азота и большим углерода, например, соломы, соломистого навоза. Азот удобрений мобилизует почвенный азот, что приводит к повышению коэффициента использования.
Аммонийная селитра в больших дозах на малобуферных легких почвах повышает содержание нитратов в растениях. Использование таких растений на корм животным может приводить к нарушению обмена веществ и отравлениям. Микрофлора рубца жвачных животных восстанавливает нитраты до нитритов, которые, попадая в кровь, связывают гемоглобин, блокируют его способность переносить кислород. Повышенная концентрация метгемоглобина в крови животных приводит к удушью, при сильном отравлении — к гибели.
На эффективность аммонийной селитры при внесении в кислые почвы имеет значение своевременное известкование. Отрицательное действие потенциальной кислотности может устраняться нейтрализацией удобрения известью или доломитом в расчете на 1 т удобрения 1 т СаСO3.
Аммонийную селитру используют в качестве допосевного (основного) и рядкового (при посеве) удобрения, для подкормок в период вегетации.
В условиях орошения, достаточного или избыточного увлажнения, особенно на легких по гранулометрическому составу почвах, внесение нитрата аммония осенью под зяблевую вспашку нецелесообразно, из-за возможного вымывания нитратного азота. В этих условиях его можно использовать непосредственно в момент наибольшего потребления растениями азота. В небольших дозах по 10-15 кг/га селитру вносят вместе с фосфорными и калийными удобрениями в рядки при посеве сахарной свеклы и овощных культур, в лунки при посадке картофеля. Высокая эффективность отмечается при подкормке озимых зерновых и пропашных культур.
Аммонийную селитру используют также для ранневесенней подкормки озимых культур и многолетних трав. Можно применять для подкормки пропашных и овощных культур при междурядных обработках с заделкой на глубину 10-15 см культиваторами-растениепитателями.
Сульфонитрат аммония
Сульфонитрат аммония, или сульфат-нитрат аммония, лейна-селитра, монтан-селитра, (NН4)2SO4⋅2NН4NОз с примесью (NН4)2SO4. Содержит до 25-27% азота, в том числе в аммонийной форме — 18-19%, в нитратной — 7-8%. Представляет собой сероватое мелкокристаллическое или гранулированное вещество.
Получают механическим смешиванием 65% сульфата аммония и 35% нитрата аммония или внесением сухого сульфата аммония в сплав нитрата с последующим высушиванием и измельчением смеси. Продукт, получаемый последним способом также называется лейна-селитра. Другим способом получения является нейтрализация серной и азотной кислот аммиаком — монтан-селитра.
Сульфат-нитрат аммония хорошо растворим в воде, менее гигроскопичен, чем аммонийная селитра. При хранении в сухом помещении не слеживается, сохраняет сыпучесть.
По эффективности близок к сульфату аммония. Обладает значительной потенциальной кислотностью, поэтому использование его на кислых почвах требует предварительного известкования или нейтрализации удобрения перед внесением.
Известково-аммонийная селитра
Известково-аммонийная селитра, NН4NO3⋅СаСO3. Получают сплавлением нитрата аммония с известняком. Выпускают в виде гранул с различными соотношениями NH4NO3:СаСO3 — от 80:20 до 53:47. Оптимальные физико-механические свойства имеет продукт 60:40 с содержанием азота 20,5%.
В сравнении с аммонийной селитрой, это удобрение обладает меньшей гигроскопичностью, невзрывоопасно, может транспортироваться бестарным способом (навалом). Широко используется в странах Западной Европы. В России не выпускается из-за высокой стоимости транспортировки (чем ниже содержание действующего вещества, тем дороже транспортировка).
Жидкие аммиачные удобрения
Жидкие аммиачные удобрения — жидкий (безводный) и водный раствор (аммиачная вода) аммиака, а также аммиакаты. По действию на растения показывают такую же эффективность, как и твердые азотные удобрения. Их производство дешевле, чем твердых. Так, себестоимость единицы азота жидкого аммиака примерно на 35-40% дешевле, чем аммонийной селитры (самой дешевой из твердых азотных удобрений). В наибольших масштабах применяются в США.
Использование жидких аммиачных удобрений позволяет полностью механизировать погрузочно-разгрузочные работы и их внесение. На внесение затрачивается в 2-3 раза меньше труда, чем твердых азотных удобрений. Жидкие удобрения равномернее распределяются в почве, не обладают слеживаемостью и сегрегация (расслоение).
Применение жидких удобрений имеет ряд недостатков: хранение требует специальных резервуаров большой емкости, требуется организация распределительных пунктов, использование специального оборудования для внесения, парк автомобильных и железнодорожных цистерн для транспортировки.
Жидкие азотные удобрения вносят специальными машинами с немедленной заделкой на глубину не менее 10-12 см на тяжелых почвах и 14-18 см — на легких для исключения потерь аммиака. Потери возможны на сильнокарбонатных почвах с щелочной реакцией. Поверхностное внесение жидких аммиачных удобрений недопустимо. Мелкая заделка в сухой верхний слой почвы также связана с большими потерями аммиака.
Во всех случаях безводный аммиак заделывают на глубину не менее 14-15 см, водный раствор — не менее 10-12 см. В случае крупнокомковатой почвы, глубину заделки увеличивают в 1,2-1,5 раза. Вносят их как основное удобрение под зяблевую вспашку осенью, весной — под предпосевную культивацию и в подкормку пропашных культур в дозах (по азоту), как и для твердых азотных удобрений. На легких почвах с низкой емкостью поглощения, внесение высоких доз осенью сопряжено с возможной потерей аммиака, так как полностью может не адсорбироваться почвенным поглощающим комплексом.
Так как жидкие аммиачные удобрения вносятся локально, сошники подкормочных машин расставляют для культур сплошного сева на 20-25 см, на лугах и пастбищах — 30-35 см, при подкормке пропашных культур ширина определяется шириной междурядий. Технология использования жидких аммиачных удобрений требует более высокой квалификации специалистов.
При подкормках для исключения возможного повреждения молодых растений избытком аммиака, удобрения вносят в середину междурядий или на расстоянии 15-10 см от рядков. Для равномерного распределения в почве проводят последующие междурядные обработки почвы. По мере нитрификации образующиеся нитраты приобретают подвижность и переносятся с почвенной влагой в прикорневую зону. Интенсивность нитрификации определяется свойствами почв: на черноземных и окультуренных дерново-подзолистых почвах она протекает быстрее, чем в кислых подзолистых. Синтетический водный аммиак подвергается нитрификации быстрее, чем коксохический, так как примеси, содержащиеся в последнем ингибируют жизнедеятельность бактерий-нитрификаторов.
При правильном применении жидких аммиачных удобрений их эффективность не уступает аммиачной селитре.
Жидкий аммиак
Жидкий аммиак, NH3 — самое концентрированное безбалластное азотное удобрение, содержит 82,3% азота. Получают сжижением газообразного аммиака под давлением. Представляет собой бесцветную жидкость плотностью 0,61 кг/м 3 при 20 °С. Температура замерзания —77,7 °С, кипения -33 °С. При нормальной температуре быстро превращается в газ. При хранении в открытых сосудах аммиак быстро испаряется с сильным охлаждением. Упругость паров жидкого аммиака:
Давление паров аммиака, Па | 192⋅10 3 | 293⋅10 3 | 424⋅10 3 | 616⋅10 3 | 859⋅10 3 | 116⋅10 4 | 178⋅10 4 |
---|---|---|---|---|---|---|---|
Температура, °С | -20 | -10 | 0 | 10 | 20 | 30 | 40 |
Для предотвращения улетучивания жидкого аммиака, его хранят и транспортируют в специальных стальных цистернах, рассчитанных на давление в 2,5-3,0 МПа. При 20-40° давление его паров составляет 9-18 атм. Упругость паров, плотность и содержание азота в 1 м 3 зависимости от температуры. При хранении аммиака в закрытых сосудах под давлением разделяется на две фазы: жидкую и газообразную. Из-за большой упругости паров емкости для хранения и транспортировки заполняют не полностью. Жидкий аммиак корродирует медь, цинк и их сплавы, не реагирует с железом, чугуном и сталью.
Жидкий аммиак является сильнодействующим отравляющим веществом; смесь с воздухом при объемной концентрации аммиака 15-27% взрывоопасна. Взрыв может произойти от искры и любого открытого источника огня. При попадании на кожу возникают ожоги, при испарении — обморожения.
В почве жидкий аммиак превращается в газ, адсорбируется почвенными коллоидами и поглощается почвенной влагой. Хорошо растворим в воде: при нормальных условиях (при 20 °С и атмосферном давлении) в 1 объеме воды растворяет 702 объема аммиака.
Скорость и степень адсорбции аммиака почвой определяется емкостью поглощения и влажностью, способом и глубиной внесения. На тяжелых почвах с высоким содержанием органического вещества и нормальном увлажнении поглощение больше, чем на легких, бедных гумусом почвах. На легких или сухих почвах аммиак долго сохраняется в газообразном виде, что приводит к потерям на улетучивание.
После внесения жидкого аммиака в первые дни реакция почвы смещается в сторону подщелачивания до рН 9. В зоне внесения удобрения происходит временная стерилизация почвы, что приостанавливает процесс нитрификации аммонийного азота. Через 1-2 недели микробиологическая активность восстанавливается. В оптимальных условиях полная нитрификация аммиака происходит в течение месяца.
По окупаемости дополнительным урожаем жидкий аммиак сопоставим с твердыми азотными удобрениями, на легких почвах, в условиях орошения или избыточного увлажнения превосходит их.
Аммиачная вода
Водный раствор аммиака, или аммиачная вода, NН3 + Н2O. Представляет собой прозрачную жидкость, иногда с желтоватым оттенком. В водном растворе аммиака всегда присутствует равновесие между поглощенным водой аммиаком и газообразным над поверхностью раствора, что обуславливает его потерю при хранении в открытых сосудах.
Раствор аммиака выпускают двух сортов: первый с содержанием 20,5% азота, или 25% аммиака, второй — 16,4% азота, или 20% аммиака. Коксохимический водный раствор содержит примеси сероводорода, фенолов, роданистых и цианистых соединений.
Аммиачная вода отличается небольшой упругостью паров аммиака (25%-ный раствор — 0,15 кгс/см 2 при 40 °С), не корродирует черные металлы, замерзает при температуре: 25%-ный — при -56 °С, 20%-ный — при -33 °С). Плотность при температуре 15°С первого сорта — 0,910 кг/м 3 , второго — 0,927 кг/м 3 .
Хранят и перевозят в герметичных резервуарах из углеродистой стали, рассчитанных на давление до 0,4 кгс/см 2 . Аммиачная вода корродирует цветные металлы (медь, цинк, олово) и их сплавы (бронза, латунь), поэтому все технологические узлы должны быть выполнены из черных металлов. Инертна по отношению к алюминию и резине.
При внесении в почву аммиак адсорбируется коллоидами почвы и поэтому слабо мигрирует. С течением времени аммонийный азот нитрифицируется, при этом повышается подвижность. Применение аммиачной воды технически проще и безопаснее, чем жидкого аммиака. На интенсивность поглощения аммиака почвой влияет гранулометрический состав, содержание гумуса, влажность, глубина заделки. На тяжелых, хорошо обработанных почвах с высоким содержанием органического вещества, поглощение аммиака выше, чем на легких, сухих бедных гумусом, потери от улетучивания на которых значительно больше.
Недостатком аммиачной воды является низкое содержание азота, что приводит к росту затрат на транспортировку, хранение и внесение. Поэтому её использование целесообразно в хозяйствах, расположенных недалеко от мест производств удобрения.
Амидные удобрения
Карбамид
Карбамид, или мочевина, СО(NН2)2, содержит 46,7% азота, одно из самых концентрированных твердых азотных удобрений. Азот в карбамиде находится в амидной форме карбаминовой кислоты. Получают их аммиака и углекислого газа при давлении от 30,3⋅10 5 до 202⋅10 5 Па и температуре 150-220 °С. На первой стадии процесса образуется карбамат аммония:
затем при его дегидратации — карбамид:
Мочевина представляет собой белое или с желтоватым оттенком кристаллическое вещество, хорошо растворимое в воде: при 20 °С в 100 см 3 воды растворяется 51,8 г карбамида. Отличается сравнительно небольшой гигроскопичностью; при 20 °С по гигроскопичности близок к сульфату аммония, при более высоких температурах поглощает влагу сильнее. При хранении может слеживаться.
Выпускается в гранулированном виде с гранулами размером 1-З мм. При грануляции может покрываться гидрофобными добавок. Гранулированная мочевина обладает хорошими физико-механическими свойствами, практически не слеживается, сохраняет сыпучесть и рассеваемость.
В процессе грануляции под действием повышенных температур образуется примесь — биурет:
При его содержании свыше 3 % становится токсичным для растений.
Разложение биурета в почве происходит в течение 10-15 дней. Поэтому внесение мочевины с высоким содержанием биурета за 1 месяц до посева не оказывает отрицательного действия на растения. В настоящее время гранулированный карбамид выпускается с содержанием биурета не более 1%, что не оказывает угнетающего действия на растения независимо от срока внесения.
В почве мочевина растворяется почвенной влагой, под действием фермента уреазы растительных остатков и микрофлоры подвергается аммонификации, превращаясь в карбонат аммония:
В благоприятных условиях на окультуренных почвах превращение происходит в течение 1-3 дней. На малоплодородных песчаных и переувлажненных — процесс протекает до 3-х недель. Растворенная в почвенном растворе мочевина до аммонификации может вымываться.
Образующийся карбонат аммония неустойчив, на воздухе разлагается с образованием гидрокарбоната аммония и газообразного аммиака:
Поэтому при поверхностном внесении карбамида без заделки и при недостаточной влажности могут происходить потери аммиака. Потери усиливаются на почвах с нейтральной и щелочной реакциями. Карбонат аммония подвергается гидролизу с образованием гидрокарбоната аммония, NН3 и воды, что приводит к подщелачиванию среды:
С течением времени аммоний нитрифицируется, и реакция почвы смещается в кислую сторону. По мере поглощения азота растениями щелочных и кислотных остатков удобрения в почве не остается, реакция среды восстанавливается.
Мочевину используют в качестве основного удобрения на всех типах почв под любые культуры. В условиях богарного земледелия её эффективность равноценна аммонийной селитре, в орошаемых условиях — сульфату аммония. В условиях промывного водного режима почв мочевина более эффективна, чем аммонийная селитра благодаря тому, что амидный азот быстро превращаясь в аммиачный и поглощается почвой без вымывания из корнеобитаемого слоя.
Карбамид применяют для подкормок озимых культур ранней весной с немедленной заделкой боронованием. Согласно опытам, заделка мочевины даже на 1,5 см резко сокращает потери аммиака. Мочевину применяют для подкормки пропашных и овощных культур культиваторами-растениепитателями. Однако на сенокосах и пастбищах поверхностное внесение мочевины показывает эффективность на 15-20% ниже, чем аммиачная селитра ввиду значительных потерь аммиака от аммонификации карбамида.
Мочевина является лучшей формой для некорневых подкормок растений, особенно пшеницы, особенно для повышения белковости зерна, благодаря тому, что она даже в повышенной концентрации (1%-ный раствор) не приводит к ожогам листьев и хорошо усваивается растениями. Карбамид поглощаться клетками листьев в виде целой молекулы и усваиваться растениями как в виде аммиака после аммонификации, так и прямым вовлечением в цикл превращений азотистых веществ. Для внекорневых подкормок желательно применять кристаллическую форму, так как содержание в ней биурета ниже 0,2 — 0,3%.
Использование карбамида в качестве припосевного удобрения (в рядки) может приводить к замедлению прорастания семян из-за угнетающего действия избытка свободного аммиака.
Вследствие высокой концентрации азота значение равномерного внесения в почву для мочевины имеет существенно значение. Для равномерного рассева её непосредственно перед внесением тщательно смешивают с другими удобрениями.
В мировом ассортименте азотных удобрений доля использования мочевины постоянно возрастает. Совершенствуются и технологии её производства, которые позволяют получать карбамид более высокого качества при снижении себестоимости.
Карбамид применяется в производстве сложных и медленнодействующих азотных удобрений. В связи с более высокой экономичностью применения мочевины и других высококонцентрированных азотных удобрений удобрения с низким содержанием азота теряют в балансе потребления азотных удобрений свое значение.
Цианамид кальция
Цианамид кальция, CaCN2 содержит 20-21% азота. Представляет собой легкий порошок черного или темно-серого цвета, пылящийся при рассеве, при попадании в глаза и дыхательные пути может приводить к воспалению. Является физиологически щелочным удобрением, так как содержит до 20-28% СаО. Заводской технический цианамид содержит примеси угля — 9-12%, кремневой кислоты, оксидов железа и алюминия.
Систематическое применение его на кислых почвах приводит к улучшению их физико-химических свойств благодаря нейтрализующей кислотность способности и обогащению кальцием. Вносят за 7-10 дней до посева или осенью под зяблевую обработку. В подкормку использовать не рекомендуется, так как в почве цианамид кальция подвергается гидролизу и взаимодействует с поглощающим комплексом с образованием цианамида H2CN2, который токсичен для растений.
В качестве удобрения почти не применяется, чаще используют для предуборочного удаления листьев хлопчатника и подсолнечника при уборке на семена.
Смешанные азотные удобрения
Аммиакаты
Аммиакаты — азотные удобрения, представляющие собой водный раствор аммиака и аммонийной селитры, аммонийной и кальциевой селитр, мочевины или аммонийной селитры и мочевины. Содержат от 30 до 50% азота. Производят аммиакаты в специальных смесителях путем введения горячего раствора аммонийной селитры (мочевины или кальциевой селитры) в 10-15%-й раствор аммиака.
Аммиакаты — жидкости светло-желтого цвета, в зависимости от состава упругость паров аммиака составляет при температуре 32 °С от 0,2 до 3,6 атм. По упругости паров аммиакаты подразделяют на две группы:
- с умеренной упругостью паров — 0,2-0,7 атм, с содержанием 35-40% азота;
- с повышенной упругостью паров — 0,7-3,6 атм, с содержанием 40-50% азота.
Аммиакаты различаются температурой начала кристаллизации: от 14 до 70 °С. В зимний период для хранения выпускают аммиакаты с низкой, летом — с более высокой, температурой кристаллизации.
Аммиакаты способны корродировать сплавы меди и черных металлов, поэтому емкости и оборудование изготавливают из легированных сталей, алюминия и его сплавов, либо применяют стальные цистерны с защитным антикоррозийным покрытием (эпоксидными смолами), а также емкости из полимерных материалов. Транспортируют и хранят в специальных, герметичных цистернах, рассчитанных на небольшое давление. 20-40% азота в аммиакатах находятся в виде аммиака и 60-80% в виде аммонийной соли или мочевины.
Применение аммиакатов требует тех же условий внесения, что и аммиачные жидкие удобрения, то есть соблюдение глубины заделки в зависимости от гранулометрического состава. В почве диффузия аммиака, как правило, составляет не более 8-10 см, поэтому расстояние между сошниками при внесении аммиакатов должно быть не более 20-25 см. При внесении аммиакатов в качестве подкормки пропашных культур расстояние между сошниками устанавливают равным ширине междурядий.
По действию на сельскохозяйственные культуры аммиакаты равноценны твердым азотным удобрениям. В России наибольшее распространение получили углеаммиакаты — аммиачные растворы карбоната и гидрокарбоната аммония и мочевины, содержащие 4-7% аммиака и 18-35% общего азота.
КАС — азотные удобрения, представляющие собой водный раствор карбамида и аммонийной селитры.
КАС с содержанием азота 28-32% имеет ряд преимуществ перед твердыми и жидкими азотными удобрениями: не содержат свободного аммиака, поэтому более технологичны и удобны в применении; их можно хранить в открытых резервуарах без потерь азота. Карбамид и аммонийная селитра в растворах создают эффект взаимного растворения, что позволяет получать более концентрированные удобрения без риска кристаллизации. Представляют собой прозрачные или желтоватые жидкости, плотностью 1,26-1,33 г/см 3 , с нейтральной или слабощелочной реакцией.
Растворы КАС получают в промышленных условиях из неупаренных плавов карбамида и аммонийной селитры. За счет исключения стадий упаривания, гранулирования, кондиционирования и упаковки, снижается себестоимость их производства.
Изменение соотношения карбамида и селитры позволяет регулировать температуры кристаллизации (высаливания), что позволяет использовать их в различных регионах, сроки и сезоны.
Марки растворов КАС подбирают с учетом температуры хранения и использования, чтобы не допустить кристаллизацию.
На основе растворов КАС возможно применение комплексных удобрений, в состав которых вводят макро- и микроэлементы, например, солей кобальта, бора, меди, молибдена, гербициды, ретарданты.
Транспортируют растворы КАС железнодорожными цистернами из углеродистой стали или автоцистернах, используя ингибиторы коррозии. При равном объеме КАС-32 содержится в 1,3 раза больше азота, чем гранулированная мочевина, и в 1,5 раза больше, чем аммиачная селитра, что сокращает расходы на транспортировку и хранение. Для внутрихозяйственных перевозок и внесения КАС в почву можно применять ту же технику, что и для других жидких удобрений, аммиачной воды или гербицидов.
Таблица. Состав и свойства растворов различных марок КАС 1
Состав и свойства растворов | КАС-28 | КАС-30 | КАС-32 |
---|---|---|---|
Состав по массе, %: | |||
NH4NO3 | 40,1 | 42,2 | 43,3 |
CO(NH2)2 | 30,0 | 32,7 | 36,4 |
H2O | 29,9 | 25,1 | 20,3 |
Плотность при 15,6 °С, т/м 3 | 1,28 | 1,30 | 1,33 |
Температура выпадения кристаллов, °С | -18 | -10 | -2 |
Растворы КАС применяют в качестве основного удобрения и подкормок. Для основного внесения можно использовать внесение непосредственно в почву или поверхностно с последующей заделкой. Их можно применять для корневых подкормок пропашных культур, и для некорневых подкормок зерновых. Растворы КАС могут вноситься вместе с оросительной водой дождевальными установками.
Медленнодействующие азотных удобрений
Производство медленнодействующих удобрений развивается разными направлениями, например:
- получением соединений с ограниченной растворимостью в воде (уреаформы);
- покрытие частиц удобрений веществами, замедляющими растворение (воск, парафин, масла, смолы, полимеры);
- введение в удобрение ингибиторов нитрификации.
Преимущества медленнодействующих удобрений:
- уменьшение потерь питательных веществ от внесения до поглощения растениями;
- повышение коэффициента использования удобрений;
- уменьшение негативного воздействия на окружающую среду;
- повышение качества продукции за счет снижения содержания нитратов;
- сокращение трудовых затрат от замены дробного внесения на один прием;
- сохранение качества удобрений при хранении и транспортировке.
Самыми крупными производителями медленнодействующих удобрений являются США и Япония.
Для получения медленнодействующих удобрений применяют альдегиды: формальдегид, ацетальдегид, кротоновый и изомасляный альдегиды и др. При этом получают соответственно: мочевиноформальдегидное удобрение (МФУ), или уреаформ, с содержанием 38-40% азота, 28-32% которого нерастворимо в воде, кротонилидендимочевина (КДМ) с содержанием азота около 32%, изобутилендимочевина (ИБДМ), с содержащанием 31% малорастворимого азота, мочевино-формацетальдегид (МФАА).
Применение труднорастворимых форм азотных удобрений перспективно в условиях избыточного увлажнения и орошения, также при внесении под овощные культуры, лугопастбищные травы, травостои на спортплощадках и газонах, под которые азот вносится в больших дозах и в несколько приемов.
В обычных дозах в первый год после внесения эти удобрения менее эффективны, чем карбамид. Однако при больших дозах они не создают избыточно высокой концентрации, азот почти не вымывается, меньше подвергается денитрификации, по мере разложения в течение длительного периода используется растениями. Медленнодействующие азотные удобрения можно вносить в высоких дозах один раз в 2-3 года, не опасаясь потерь азота.
Недостатком медленнодействующих удобрений является высокая стоимость по сравнению с традиционными азотными удобрениями, скорость высвобождения азота не всегда соответствует скорости поглощения большинством культур в течение вегетации, чем и обусловлена меньшая эффективность по сравнению с мочевиной в первый год после внесения.
Капсулированные азотные удобрения
Перспективно развитие производства капсулированных азотных удобрений. Капсулированные удобрения представляют собой обычные водорастворимые формы, но гранулы их покрываются пленками, замедляющие растворение. Капсулированные удобрения обладают хорошими физико-механическими свойствами: менее гигроскопичны, гранулы более прочны, не слеживаются. При попадании в почвы из гранул происходит постепенное высвобождение азота и его усвоение растениями по мере разрушения капсул. В зависимости от состава и толщины капсул возможно регулировать скорость растворения удобрения в соответствии с биологическими потребностями культур и периодичности питания.
Для капсулирования применяют парафин, эмульсию полиэтилена, соединения серы, акриловую смолу, полиакриловую кислоту.
Опыты показывают, что применение капсулированных азотных удобрений перспективно под рис, на лугах и пастбищах длительного пользования, под овощные культуры, прежде всего в районах с избыточным увлажнением и при орошении. В посевах зерновых культур преимущества капсулированных удобрений над обычными практически отсутствуют. Главным недостатком является высокая стоимость, вследствие чего эти удобрения применяются в сельском хозяйстве ограничено.
Ингибирующие нитрификацию удобрения
Из ингибиторов нитрификации используют циангуанидин (дициандиамид), американский препарат N-serve, или нитрипирин (2-хлор-6-трихлорметил)пиридин или японский препарат AM (2-амино-4-хлор-6-метилпиримидин). В России производят ингибиторы пикохлор и джакос — производные нитрипирина. Внесение этих ингибиторов в смеси с твердыми или жидкими аммиачными удобрениями в дозах N-serve 0,5-1%, AM 1-3% от содержания азота происходит ингибирование процессов нитрификации до 1,5-2 месяцев, то есть на период интенсивного потребления растениями азота.
На скорость разложения ингибиторов в почве и, соответственно, продолжительность их действия влияет гранулометрический состав почвы, влажность, реакция среды, температура, содержание гумуса.
Ингибиторы, замедляя нитрификацию, снижают потери азота в газообразной форме, смыва с поверхностным стоком и вымыванием. Это приводит к повышению урожаев, прежде всего хлопчатника, риса, овощных культур, кукурузы на зерно и силос, пропашных и кормовых культур, возделываемых в условиях орошения или избыточного увлажнения.
Использование ингибиторов положительно влияет на качество продукции, так как препятствует накопление нитратов, снижается заболеваемость растений некоторыми болезнями. За счет повышенного коэффициента использования азота, дозы азотных удобрений снижаются, а дробное внесение заменяется внесением за один прием всей дозы.
Таблица. Влияние ингибитора нитрификации N-Serve на эффективность азотных удобрений и накопление нитратов в зеленой массе озимого рапса (ВИУА)
Вариант опыта | Мочевина | Сульфат аммонния | ||||||
---|---|---|---|---|---|---|---|---|
Урожайность, т/га | Прибавка, т/га | Содержание N-NO3 в рапсе, % | Урожайность, т/га | Прибавка, т/га | Содержание N-NO3 в рапсе, % | |||
от азота | от ингибитора | от азота | от ингибитора | |||||
Без азота | 26,2 | — | — | 0,017 | 26,2 | — | — | 0,017 |
N45 | 37,0 | 10,8 | — | 0,026 | 38,4 | 12,2 | — | 0,026 |
N45 + ингибитор | 38,4 | 12,2 | 1,4 | 0,027 | 40,0 | 13,8 | 1,6 | 0,028 |
N90 | 45,9 | 19,7 | — | 0,103 | 47,3 | 21,1 | — | 0,105 |
N90 + ингибитор | 48,0 | 21,8 | 2,1 | 0,073 | 50,0 | 23,8 | 2,7 | 0,082 |
N135 | 53,0 | 26,8 | — | 0,226 | 53,8 | 27,6 | — | 0,243 |
N135 + ингибитор | 58,2 | 32,0 | 5,2 | 0,156 | 59,2 | 33,0 | 5,4 | 0,165 |
Мочевино-формальдегидные удобрения (МФУ)
Мочевино-формальдегидные удобрения (МФУ), или карбамидформ, уреаформ, — продукты химической конденсации мочевины CO(NH2)2 и формальдегида (СН2O). Конденсация проходит в концентрированных растворах при эквивалентных соотношениях мочевины и формальдегида в подкисленной до pH 3 среде, при температуре 30-60°. При этом образуется монометилмочевина CONHCH2NH2OH, которая взаимодействует снова с мочевиной и переходит в метилендимочевину NH2CONHCH2NHCONH2 с выделением воды. Получающийся конденсат отфильтровывают, высушивают, измельчают, при необходимости, гранулируют. Продукт реакции представляет обычно белый рассыпчатый порошок, который не слеживается и сохраняет сыпучесть даже при высокой влажности.
Содержание азота в МФУ составляет 38-40%, на долю водорастворимого приходится 8-10%, нерастворимая часть остается доступной для растений.
Один из главных показателей МФУ является индекс усвояемости — количество нерастворимого в воде азота, которое растворяется при кипячении в течение 1 ч. Выражают в процентах от водонерастворимого азота. Индекс усвояемости зависит от реакции, температуры, молярного соотношения мочевины и формальдегида, продолжительности конденсации. Варьирует в пределах от 15 до 55%.
В некоторых зарубежных странах индекс усвояемости условно принимается равным количеству азота, которое нитрифицируется в течение 6 месяцев нахождения удобрения в почве. Степень нитрификации МФУ — показатель их эффективности, зависит от индекса усвояемости и свойств почвы. МФУ с высоким индексом усвояемости соответствует большему и более быстрому накоплению нитратного азота в почве.
Кислая реакция почвы снижает скорость превращения МФУ, поэтому известкование увеличивает скорость нитрификации. Высокие дозы МФУ подщелачивают почву, по мере их минерализации происходит постепенное подкисление.
При определенных условиях протекания реакции конденсации, например, при температуре 30-40°, получают МФУ с высоким содержанием доступного для растений азота, приближающегося к растворимым азотным удобрениям. В этом случае они теряют свое назначение как медленнодействующее удобрение.
Производство МФУ перспективно потому, что все азотные удобрения хорошо растворимы, однако внесение их в больших дозах создает высокую концентрацию и осмотическое давление почвенного раствора, что отрицательно сказываться на растениях в начальные стадии роста, особенно культур, чувствительных к высоким концентрациям солей, таких как кукуруза и лен. Кроме того, в районах достаточного увлажнения, прежде всего на легких почвах, и при орошении возможны потери азота от вымывания.
На дерново-подзолистых почвах с разной степенью окультуренности и разных звеньях полевых севооборотов преимущества МФУ перед растворимыми азотными удобрениями ни по величине урожая, ни по качеству продукции не выявлено. На тяжелых дерново-подзолистых почвах эффективность МФУ на урожае зеленой массы кукурузы оказалось ниже.
Коэффициенты использования азота удобрений
Эффективное применение азотных удобрений возможно только при учете их свойств и особенностей трансформации азота в почвах. Все азотные удобрения, за исключение медленнодействующих форм, хорошо растворимы в воде. Нитратные удобрений мигрируют в почве с почвенной влагой и, кроме как биологического, никаким видом поглощения не связываются. Биологическое поглощение протекает только в теплое время года. Поэтому нитраты в условиях промывного водного режима почвы могут вымываться, прежде всего на легких почвах. При повышенных дозах на почвах легкого гранулометрического состава в паровых полях в условиях избыточного увлажнения или орошения потери нитратного азота могут достигать 10-25% от внесенной.
Аммиачные и аммонийные формы при попадании в почву поглощаются почвенным поглощающим комплексом. В таком виде они теряют подвижность, но остаются доступными для растений, не вымываются, за исключением легких почв с низкой емкостью поглощения. При благоприятных условиях в результате нитрификации они трансформируются в нитраты, приобретая их свойства. Аналогично ведет себя в почве мочевина после ее превращения в аммонийные формы в результате деятельности уробактерий.
Все азотные удобрения изначально или в ходе нитрификации накапливаются в почве в виде нитратов. Нитраты подвержены процессам денитрификации, которые характерны почти для всех почв, а основные потери азота связаны именно с ними. Согласно опытам, потери азота от денитрификации для аммонийных и амидных форм составляют около 20%, для нитратных — до 30% от внесенного количества. В чистом пару и с увеличением доз потери азота возрастают до 50%.
С экологической точки зрения денитрификация имеет положительное значение, так как «освобождают» почву от избытка неиспользованных нитратов, препятствуя их попадание в грунтовые воды и водоемы.
В почве часть азота удобрений в результате жизнедеятельности микроорганизмов трансформируется в органические, недоступные для растений формы. В результате иммобилизации примерно 10-12% азота нитратных и 30-40% аммонийных, аммиачных и амидных удобрений закрепляется в органической форме. Интенсивность иммобилизации возрастает с внесением органических удобрений с низким содержанием азота и высоким углерода (стерня, солома, соломистый навоз).
Ранее предполагалось, что растения в первый год внесения азотных удобрений используют 60-70% поступившего азота. Эти данные получены в полевых опытах с помощью разностного метода путем сопоставления выноса азота в контрольных вариантах (без удобрения) и в вариантах с удобрениями. Более поздние исследования с использованием меченых атомов азота показали: в полевых условиях растения поглощают из удобрений 30-50% азота, но при этом на удобренных вариантах на 20-30% повышается использование растениями азота почвы. За счет этого суммарный вынос азота на удобренных вариантах увеличивается на 20-30%, в следствие чего коэффициенты использования азота, рассчитанные по разностному методу, на 20-30% завышены от фактических.
Тем не менее, для практических задач, например, расчет баланса азота, доз азотных удобрений, пользуются коэффициентом использования азота, полученными разностным методом, потому что он характеризует общее потребление растениями азота. Балансовые расчеты, выполненные в многолетних опытах, включающих несколько ротаций севооборота, подтверждают эти выводы. Коэффициенты использования азота удобрений по балансовому методу составляют 60-70%.
Большая часть внесенного в почву азота удобрений расходуется за вегетационный период на потребление растениями, иммобилизацию, денитрификацию, вымывание и эрозию. Поэтому последействие азотных удобрений принято не учитывать.
Список щелочных и физиологически кислых удобрений, чем удобрять почву?
Причины слабого развития растений и снижения урожайности не всегда кроются в недостатке питательных веществ. Такие признаки возникают при выращивании культур в грунте с неподходящей кислотностью. Нарушение естественного восстановления земель приводит к изменению их состава. Использование щелочных удобрений для кислой почвы позволяет нормализовать pH и восстановить естественное плодородие.
Зависимость урожая от видов грунтов
Каждый тип земли имеет характерное, только ему свойственное строение. Составные элементы – слои – отличаются составом, цветом, структурой.
Наиболее плодородные – черноземы. Чтобы культуры бесперебойно плодоносили, необходимо периодически пополнять запас макро- и микроэлементов. Для увеличения рыхлости требуется вносить песок, компост или торф.
Также благоприятны супесчаники и суглинки. Они воздухо- и влагопроницаемые, хорошо удерживают минеральные удобрения. Здесь комфортно себя чувствует большинство огородных растений.
Использование других типов почв связано с определенными сложностями.
Глинистый
Один из труднейших в обработке. Плохо пропускает воздух и воду, что тормозит протекание естественных биологических процессов. Повышенная кислотность еще больше затрудняет рост культур.
Глинистый грунт облагораживают путем внесения:
- древесной золы или торфа;
- речного песка для улучшения дренажных свойств;
- навоза, компоста;
- NPK-удобрений и гашеной извести под осеннюю перекопку.
На полное освоение участка уходит около пяти лет.
Песчаный
Слишком быстро пропускает влагу, сильно нагревается и промерзает, поэтому без дополнительных мер получить хороший урожай невозможно. Для повышения вязкости во время весенней перекопки вносят органические удобрения:
- эффективнее всего действует навоз;
- менее продуктивны компост, торф.<//li>
В процессе выращивания мульчируют грядки, чтобы сократить испарение.
Подзолистый
Характерен для хвойных лесов. Самый неподходящий для земледелия. Неосвоенные почвы:
- кислые;
- с высоким содержанием подвижного алюминия, токсичного для растений;
- характеризуются малым количеством питательных элементов.
Чтобы нормализовать pH, осенью грунт известкуют. Весной используют щелочные удобрения. Для утолщения плодородного слоя вносят навоз.
Болотистый
Образуется в результате чрезмерного увлажнения природными осадками или грунтовыми водами. Из-за плохого дренажа в нем скапливаются неразложившиеся растительные остатки, образуются закисные соединения железа. Такой грунт богат питательными веществами, однако для растущих здесь культур они недоступны.
Для приведения земли в нормальное состояние ее обогащают:
- органикой;
- калием;
- фосфором.
Принимают меры по искусственному осушению, делают насыпные грядки.
Какие растения любят кислую почву?
Большая часть садовых культур предпочитает слабокислые или нейтральные почвы. Однако особую группу составляют растения ацидофилы. Им необходимы исключительно средне- или сильнокислые земли.
Такая особенность связана с необычным строением корневой системы. На ней отсутствуют волоски – длинные выросты наружной клетки, с помощью которых другие культуры всасывают питательные вещества.
Ацидофилы живут в симбиозе с мицелиями гриба, проникающими в ткань корня и поставляющими в нее влагу и необходимые элементы. Это явление называется микоризой. Его существование возможно только при высокой кислотности. При нейтральной или щелочной реакции растения плохо развиваются, чахнут и погибают.
Список ацидофилов приведен в таблице.
Хвойные | Сосна, ель, можжевельник, пихта |
Цветы | Рододендрон, золотая розга, гвоздика, лилия, люпин, гортензия, примула, вереск, первоцвет, гравилат, дицентра |
Ягоды | Голубика, брусника, клюква, черника |
Для успешного роста данные культуры дополнительно поливают раствором кислоты.
Также на кислых и среднекислых почвах массово растут сорные травы:
- хвощ;
- подорожник;
- горец почечуйный;
- лютик ползучий;
- лапчатка;
- осот;
- мокрица;
- василек луговой;
- камыш.
Одиночные растения могут появиться на любом типе грунта. Их наличие не свидетельствует о закислении земли.
Как влияет кислотность на растения?
Кислотность почвы характеризуется значением pH – показателем уровня содержания ионов водорода. В зависимости от этой величины реакция почвенного раствора может быть следующей:
Реакция | pH |
Сильнокислая | 3,5-4,0 |
Кислая | 4,0-5,0 |
Слабокислая | 5,0-6,0 |
Нейтральная | 6,0-7,0 |
Щелочная | 7,0-8,0 |
Высокая кислотность крайне нежелательна. В такой среде перестают активно работать полезные микроорганизмы. Из-за этого снижается плодородие и эффективность вносимых удобрений. В таких землях скапливается алюминий и марганец, которые препятствуют:
- усвоению питательных элементов;
- нормальному течению обменных процессов;
- формированию органов размножения (соцветий).
В результате культуры развиваются хуже, урожайность значительно снижается. Растения теряют возможность получать полноценное питание, появляются признаки азотного голодания:
- бледная окраска и истончение листьев;
- мельчание цветов и плодов;
- повышение восприимчивости к болезням.
К алюминию особенно чувствительны:
- репа;
- свекла;
- горох;
- фасоль.
К марганцу – практически все культурные растения.
Как проверить кислотность плодородного слоя земли?
Точные данные об уровне pH получают в агрохимических лабораториях. Однако не каждый огородник может отправить образцы почвы на анализ. Существует несколько более простых способов, которые дают удовлетворительный результат:
- Лакмусовая бумага. Образец почвы заливают 3-кратным количеством дистиллированной воды, тщательно перемешивают, настаивают полчаса. Потом в раствор погружают индикаторный листок и сравнивают его окраску со стандартной шкалой.
- Прибор – pH-метр. Для измерения кислотности выкапывают отверстие глубиной около 10 см, заполняют водой, размешивают до образования земляной кашицы. Вращательными движениями заглубляют в него щуп устройства, оставляют на пару минут, после чего проверяют результат.
- Берут 4-5 листиков черной смородины, заливают их 200 мл горячей воды, остужают. Потом кладут землю. Жидкость приобрела синий оттенок – реакция нейтральная, зеленый – слабокислая, красный – кислая.
- В стакан с чистой водой наливают немного 9% уксуса, кладут 1 ч. л. земли, размешивают. Раствор сильно пенится – реакция щелочная, пены мало – нейтральная, ничего не происходит – кислая.
Чтобы получить достоверный результат, при сборе образцов почвы придерживаются следующих правил:
- задействуют разные участки огорода, потому что pH меняется при выращивании определенных культур и внесении удобрения;
- извлекают землю с глубины 20-30 см: на поверхности реакция всегда приближена к нейтральной.
Наличие на участке некоторых растений сигнализирует о показателе pH:
- ромашка, овсяница, пырей, клевер, вьюнок полевой растут на слабокислой почве;
- мать-и-мачеха, льнянка, дикий мак, полевая горчица – на щелочной.
Кислотность легко проверить по свекле. Красные листья – реакция кислая, красноватые прожилки на листовых пластинах – слабокислая, зеленая ботва и крупные корнеплоды – нейтральная.
Чем удобрять кислую почву для разных растений: обзор органических и минеральных подкормок
На землях с пониженным pH используют удобрения со щелочной или нейтральной реакцией, которые не закисляют почву. Кислые составы только усугубят состояние и не принесут ожидаемого эффекта.
Органические удобрения
Восстановлению pH способствует органика. Наиболее распространен коровий навоз, имеющий кислотность 7-8 единиц. Он содержит необходимые вещества в оптимальном соотношении, повышает плодородие, делает почву рыхлой.
Навоз используют в качестве удобрения только после перепревания. В свежем виде он производит обратный эффект, обжигает корни и листья растений.
Еще один отличный органический продукт со щелочной реакцией – древесная зола. Ее состав во многом зависит от того, какое сырье использовалось для приготовления. Обычно материал содержит кальций, кремний, фосфор, калий и другие ценные элементы.
Однако в золе нет азота, поэтому данное вещество обязательно вносят отдельно. Еще одна важная особенность – древесная зола не содержит хлора. Ей в первую очередь удобряют культуры, восприимчивые к этому веществу:
- картофель;
- капусту;
- кабачки;
- огурцы;
- смородину.
Перегной – универсальное органическое удобрение. Его используют на землях с любой реакцией.
Сторонники органического земледелия выращивают на закисленных участках растения сидераты:
- донник;
- фацелию;
- рожь;
- овес;
- горчицу белую;
- люцерну.
В конце сезона их скашивают и запахивают в землю. В результате pH постепенно приходит в норму. Это менее радикальный метод, требующий длительного времени.
Для подкисления почвы используют другие органические удобрения – верховой торф, перепревшую хвою, листовой компост.
Минеральные удобрения
Основной метод борьбы с повышенной кислотностью – внесение гашеной извести, доломитовой муки или мела. Данные средства быстро нормализуют pH и насыщают почву другими ценными элементами.
Первые два продукта вносят осенью или минимум за 2 недели до посадки. Мел применяют непосредственно при предпосевной подготовке. Количество раскислителей на м² зависит от исходного состояния земли и ее механического состава.
Известь – жесткий раскислитель. При чрезмерном количестве, внесенном в почву, вещество сжигает корни растений.
Лояльность культур к типам грунта увеличивается, если правильно организована система питания. Главную роль играет азот. На кислых почвах предпочтительнее использовать нитратные формы, имеющие щелочную реакцию. Дополнительно следует увеличивать концентрацию магния, кальция и калия.
Минеральные удобрения, подходящие для кислой почвы:
Сернокислый калий | На 50% состоит из калия, 18% приходится на серу, 3% – на магний, 0,4% – на кальций. рН раствора колеблется от 5,5 до 8. |
Натрий азотнокислый | Содержит до 25% натрия, 15-17% легкоусвояемого азота, бор, цинк, марганец, молибден. pH=7. |
Кальциевая селитра | В составе 19% кальция, около 13% азота, pH 1% раствора – 5,0-8,0. |
Карбонатная нитрофоска | Содержит фосфор в цитратнорастворимой форме, по эффективности сравнима с суперфосфатом. |
Цианамид кальция | Применяют как азотное удобрение, значительная концентрация щелочи обусловлена наличием оксида кальция. |
Фосфористая мука | Источник фосфора (более 10%), калия (К2О) – 1,5%, оксида кальция (СаО) – 19%, карбоната кальция – 34,3%. Используется на кислых подзолистых почвах и торфяниках. |
Аммофос и азофоска подходят для всех типов почв. Они не влияют на показатель pH, но обеспечивают культуры необходимыми веществами.
Сульфат аммония, карбамид, хлористый аммоний, нитрат аммония, монтан-селитра – физиологически кислые удобрения. Они подкисляют почву.
Грамотный подбор подкормок – залог здоровья овощных культур и высоких урожаев. Закисленным землям нужны особые составы, имеющие щелочную реакцию. Удобрения могут быть как органическими, так и минеральными. Препараты подбирают исходя из потребностей культур в питательных элементах.
https://universityagro.ru/%D0%B0%D0%B3%D1%80%D0%BE%D1%85%D0%B8%D0%BC%D0%B8%D1%8F/%D0%B0%D0%B7%D0%BE%D1%82%D0%BD%D1%8B%D0%B5-%D1%83%D0%B4%D0%BE%D0%B1%D1%80%D0%B5%D0%BD%D0%B8%D1%8F/
https://superurozhay.ru/podkormka-rastenij/chem-udobryat-kisluyu-pochvu-dlya-vysokogo-urozhaya.html